Welcome to C programming for devices.

Arduino 2.

Topics for today:

- * Use of a struct for DCC messages.
- * Protocols.
- * Timer constants.
- * Timer setup for interrupt.
- * The interrupt routine.

Structures:

* How to create a struct, insert data, read the data.

A struct:

```
* struct Message msg[MAXMSG] =

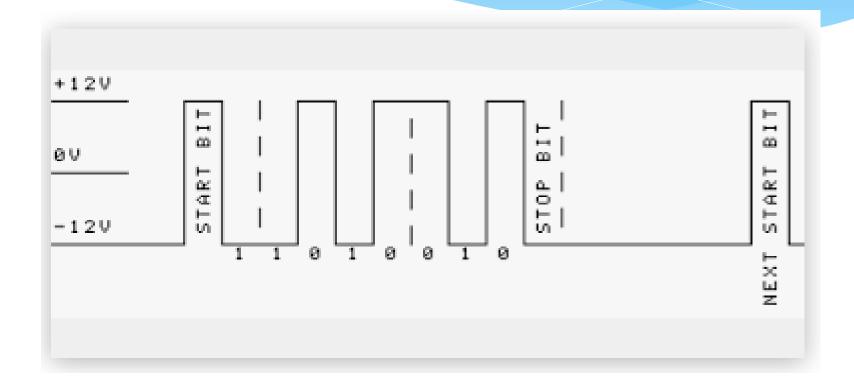
* • {

* • { ( oxFF, o, oxFF, o, o, o, o, o}, 3}, // idle msg

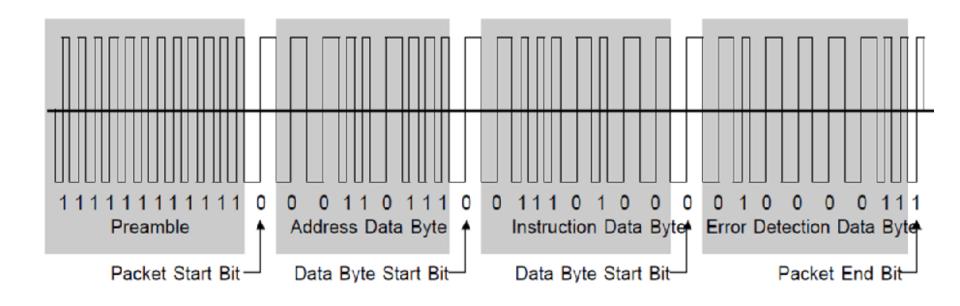
* • { ( o, o, o, o, o, o, o, o}, 3}, // locoMsg short

* • { ( o, o, o, o, o, o, o, o}, 4} // locoMsg long

* • 
* • };
```


Protocols:

- * What protocols do you know?
- * English, German, Danish
- * Ethernet, IEEE 802.11bgn, Token Ring, Bluetooth.
- * RS232, RS422, RS485
- * DCC


RS232:

- * What is important to RS232
- * Bits, stopbits, parity, speed. Frame start, frame size.
- * DCC
- * Bits, frame start, separator bits, stop bit, pulswidths 58/116 microseconds
- Communitation with locomotive address, data.

RS232:

DCC:

Timer constants:

- * //Timer frequency is 2MHz for (/8 prescale from 16MHz)
- * #define TIMER_SHORT ox8D // 58usec pulse length
- # define TIMER_LONG ox1B // 116usec pulse length

Timer setup for interrupt:

```
* void SetupTimer2()
* • //Timer2 Settings: Timer Prescaler /8, mode o
* • //Timmer clock = 16MHz/8 = 2MHz oder 0,5usec
* • TCCR2A = 0;
* • TCCR2B = 0<<CS22 | 1<<CS21 | 0<<CS20;
* • //Timer2 Overflow Interrupt Enable
* • TIMSK2 = 1<<TOIE2;</p>

    //load the timer for its first cycle

* • TCNT2=TIMER SHORT;
```

The ISR routine

```
* ISR(TIMER2 OVF vect)
```

- * {
- * •//Here is the code to be executed by the //interrupt routine
- * •// send a frame
- * •}

Assignment A6:

- * Connect a button to an input port.
- * Press the button to turn on the timer.
- * Press again to stop the timer.
- Who in your group are closest to one minute ?,
- * Who is the best in the class?.

Assignment A7:

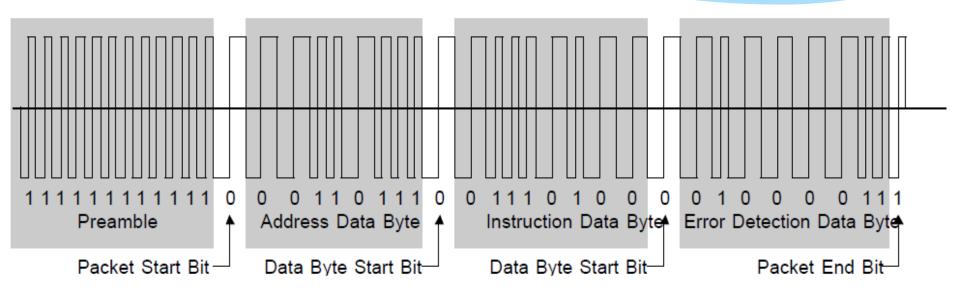
- * Connect the keypad to the arduino, write a number, display it with Serial.print().
- Now let the arduino find a random number o − 255.
- * With the keypad guess the secret number, when you succed, let the arduino show
- How many trials you had.
- * •

Assignment A8:

- * Create a program where an output pin gives pulses at 58 and 116 Microseconds.
- Use a delay function to do the work

Assignment A9:

- * By help of the timerinterrupt generate a puls with the pulswide of 58 microseconds.
- After that change the timer to 116 microseconds


Assignment A9:

- * An address starts always with a zero as MSB.
- * An example could be Boo100100 (36)
- * A command could be 0110 0100
- * Errorbyte = (adresse byte ^ kommando byte).
- * Each byte is separated by a Zero.
- * 1 is pulses of 58 microseconds (per halfcycles).
- * o is pulses of 116 microseconds (per halfcycle).

The command byte:

- * Bo1100110 Forward speed 6
- * B01101010 Forward speed 10
- * B0110 0000 Stop
- * B00100000 Stop
- * Boo100110 Backwards speed 6
- * Boo101010 Backwards speed 10

The DCC frame:

Try to make a frame:

- * By help of interrupt try to make a frame for our train.
- * Check the frame with a signal analyzer.
- * If it looks ok, then connect to the booster, and try to control the train.